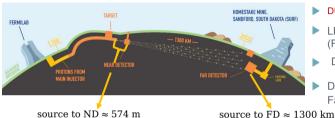
Search for anomalous tau neutrino appearance in the DUNE Near Detector

Miriama Rajaoalisoa (University of Cincinnati)

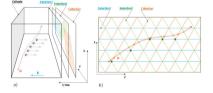
Workshop on Tau Neutrinos from GeV to EeV 2021 (NuTau2021) September 29, 2021



Introduction **DUNE** Experiment

ND-LAr: LAr TPC, 147 tons

ND-GAr


ND-LAr

LBNE

FD: 40 kton LArTPC

- **DUNE**: Deep Underground Neutrino Experiment.
- LBL experiment with a baseline of 1300 km (Fermilab to South Dakota).
- DUNE will study $\nu_{II} \rightarrow \nu_{I}$ oscillation.
- DUNE will use a ν_n beam provided by the LBNF Facility, with a small ν_e contamination.

Liquid Argon Time Projection Chamber

The capabilities of the DUNE ND's LArTPC + intense neutrino flux from LBNF (1.2 MW) + the short baseline of 574 m \rightarrow great setup for a **sterile neutrino search**.

SAND

Introduction

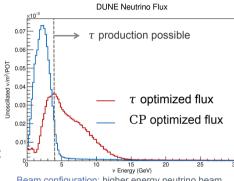
Objectives of the analysis

Objectives

Main objective

- Distance from neutrino source to DUNE ND is 574 m → In a 3flavor oscillation model, no ν_{τ} should be present at the DUNE ND.
- Study of the eventual $\nu_{\scriptscriptstyle T}$ that we may have in the DUNE ND that comes from short baseline oscillations, in a sterile neutrino framework
- Evaluate the ν_{τ} appearance sensitivity of DUNE ND by studying ν_{τ} CC interactions

Oscillation probability


Simulation

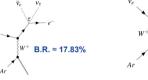
$$P(\nu_{\mu} \to \nu_{\tau}) \approx sin^2(2\theta_{\mu\tau})sin^2\left(\frac{\Delta m_{41}^2 L}{4E}\right)$$

$$\begin{array}{lcl} P(\nu_{\mu} \rightarrow \nu_{\tau}) & \approx & sin^{2}(2\theta_{\mu\tau})sin^{2}\left(\frac{\Delta m_{41}^{2}L}{4E}\right) & & sin^{2}(2\theta_{\mu\tau}) & = & 4|U_{\mu4}|^{2}|U_{\tau4}|^{2} \\ & = & cos^{4}\theta_{14}sin^{2}(2\theta_{24})sin^{2}(\theta_{34}), \end{array}$$

$$= 4|U_{\mu 4}|^2|U_{\tau 4}|^2$$

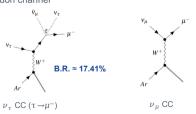
= $\cos^4\theta_{14}\sin^2(2\theta_{24})\sin^2(\theta_{34})$

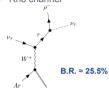
Events were generated using GENIE Neutrino event generator (analysis based on the truth infomation provided by GENIE).


Beam configuration: higher energy neutrino beam optimized for ν_{τ} appearance in the DUNE Far Detector

 ν_a CC

Transverse kinematic variables

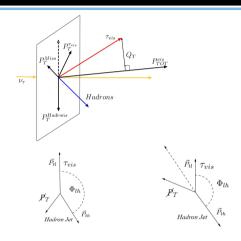

τ decay channels



Muon channel

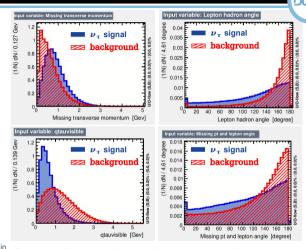
 ν_{τ} CC $(\tau \rightarrow e^{-})$

Rho channel



 ν_{τ} CC $(\tau \rightarrow \rho^{-})$

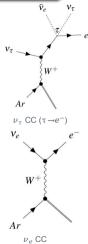
Neutral Current

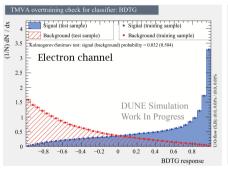

- Select the ν_{τ} events from corresponding backgrounds based on their kinematic differences (similar to those used in NOMAD).
 - In ν_{τ} CC interactions, the τ will decay into some visible
 - products and neutrinos. The neutrinos take away some energy, use missing energy to differentiate.
 - ROOT TMVA: Machine Learning algorithm (Boosted Decision Tree Gradient - BDTG) to separate ν_{τ} CC from their backgrounds.

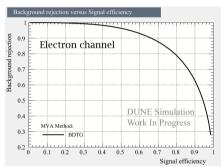
Transverse kinematic variables

Background interaction products in the transverse plane

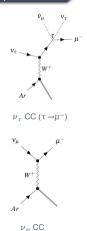
 $oldsymbol{
u}_{ au}$ CC interaction products in the transverse plane


Examples of ν_{τ} signal (blue) and background (red) kinematic variables distribution.

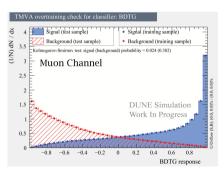


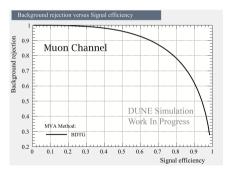

Electron channel

e channel



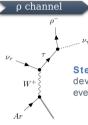
Reasonable separation of the ν_{τ} CC from their main backgrounds.




Muon channel

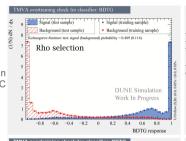
u channel

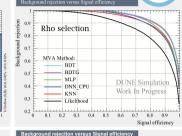
- First, created a classifier that separates muon and pions. μ^- loses energy via Multiple Coulomb scattering whereas π^- loses energy via Coulomb scattering + Hadronic scattering. (Classification using a Recurrent Neural Network).
- Classify ν_{τ} CC $(\tau \rightarrow \mu^{-})$ and ν_{η} CC using transverse kinematic differences.

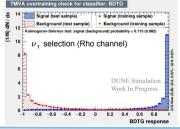


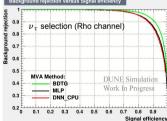
Reasonable separation of the ν_{τ} CC from their main backgrounds.

Signal and background separation Rho channel


 ν_{τ} CC $(\tau \rightarrow \rho^{-})$


 Z^0


Neutral Current


Steps: develop a ρ selector, then develop a classifier that separates NC events from $\nu_{\tau}(\tau \rightarrow \rho^{-})$.

- Signal (true ρ) $\rho^- \rightarrow \pi^- + \pi^0 : \pi^0 \rightarrow 2\nu$
 - Background (false ρ) any $\pi^{\pm} + \pi^{0}$ pair that doesn't come from a true ρ^{-} from the hadronic system or τ decay.

Sensitivity evaluation Smearing effect

Smearing

- Case 1 without smearing → In the first case, no smearing was applied to the particles four-momentum but only particles above a certain kinetic energy threshold were considered.
 - protons : above 50 MeV.
 - photons: above 30 MeV.
 - · pions : above 20 MeV.
 - no neutrons.
- Case 2 with smearing → In addition to the kinetic energy thresholds above, energy and angular resolution smearing applied to particles 4-momentum.

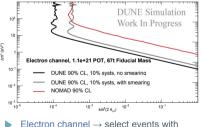
Species	Threshold [MeV]	Energy Resolution	Angular Resolution [deg]
p	50	\pm 60 MeV	± 5
π+/-	20	± 10%	± 2
γ	30	± 10%	± 5
e-		± 10%	± 2
μ^-		± 10%	± 5

Table: Smearing values based on LArTPC performance in the MicroBooNE Experiment (arXiv:2012.09788v3)

In both cases, a systematic uncertainty of 10% was taken into account.

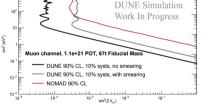
Sensitivity evaluation

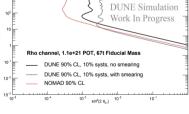
Individual channel


DUNE 9

Sensitivity → based on event counting.

All events were normalized such that they would correspond to a 1.1e21 P.O.T. and a 67t fiducial mass.


$$FOM_{systs} = \frac{s}{\sqrt{(s+b) + (\mathbf{0.1*}(s+b))^2}}$$


Event cuts → region with almost no backgrounds, events scoring a very high BDTG score were selected.

 ν_{τ} BDTG score > 0.995 (non smeared)

 ν_{τ} BDTG score > 0.9963 (with smearing)

Muon channel → select events with

 ν_{τ} BDTG score > 0.995 (non smeared) ν_{τ} BDTG score > 0.9963 (with smearing) Rho channel \rightarrow select events with ν_{τ} BDTG score > 0.99 (non smeared) ν_{τ} BDTG score > 0.992 (smeared)

Sensitivity evaluation All channels

DUNE 10

Combined channels

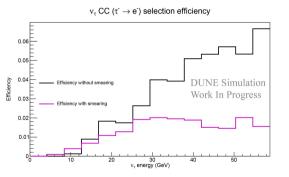
Conclusion

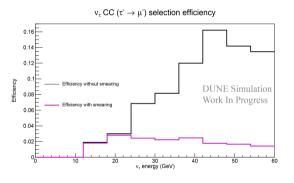
- Classification using kinematic variables in the transverse plane enables a reasonable separation of the ν_{τ} signal and background.
- With high BDTG score cuts (region with almost no background) and high-energy beam configuration, DUNE will potentially have leading sensitivity to anomalous short-baseline nutau appearance.

Next steps

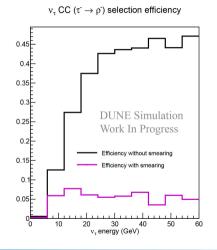
- Consider the other hadronic decay channels such as the single pion channel.
- Compare results obtained using GENIE Monte Carlo Generator with GiBUU.
- Determine differences using different τ decayers such as TAUOLA (takes into account the τ polarization).
- Work on more realistic reconstruction.

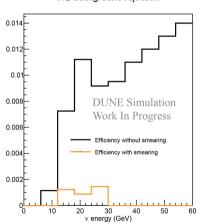
Thank you for your attention!



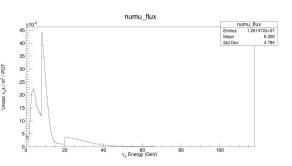


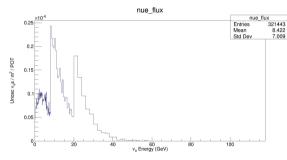
Electron channel


Muon channel



Rho channel


NC background rejection



• Optimized flux for ν_{τ} appearance in the DUNE Far Detector (Higher energy flux)

 ν_{μ} flux (unoscillated ν_{μ} per meter squared, per proton on target)

 ν_e flux (unoscillated ν_e per meter squared, per proton on target)

Leptonic channels

- Missing transverse momentum P_{T}^{miss} .
- Angle between the transverse hadronic system momentum and transverse lepton (tau visible product) momentum
 φ_{1h}.
- Angle between the missing transverse momentum and transverse lepton (tau visible product) momentum φ_{ml} .
- Lepton transverse momentum P_T^l .
- Hadronic system transverse mometum P_T^h .
- Lepton (tau visible product) energy E_I .
- Total visible energy E_{Total}^{vis} .
- Transverse mass M_T .
- Angle between the neutrino direction and missing transverse momentum $\theta_{\nu m}$.
- Angle between the neutrino direction and the hadronic system $\theta_{\nu h}$.
- Angle between the neutrino direction and the lepton (tau visible product) θ_{vl} .
- · Ratio between the hadronic system and the total visible energy.
- Component of the lepton (tau visible product) momentum perpendicular tot the total visible momentum.
- Ratio of the transverse lepton (tau visible product) momentum and the missing transverse momentum.

Rho classification

- Energy of the π^0/π^{\pm} couple.
- Energy of the π^{\pm} .
- Invariant mass of the pion.
 Invariant mass of the π⁰.
- Pion energy sharing $r_{\pi}^{K} = \frac{E_{\pi}^{K}}{E_{\pi}^{K} + E_{\pi}^{K}}$.
- Distance invariant mass and mass d = $\sqrt{(M_{_{II}}^{(inv)}-~m_{_{II}}^{0})^2+(M_{_{}\rho}^{(inv)}-~m_{_{}\rho})^2}$.
- Angle between the π^{\pm} and π^{0} .
- π[±] momentum.
 π⁰ momentum.

Rho channel vs NC classification

- All previous variables including those used for the leptonic channels.
- Minimum angle between the tau visible daughter and the hadronic system.
- Ratio between the transverse size of the hadronic system and the full event.

